O K L A H O M A S T A T E U N I V E R S I T Y
SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 Linear Systems Spring 2000 Midterm Exam \#2

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Extend the set
$\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -5 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1 \\ 0 \\ -1\end{array}\right]$
to form a basis in $\left(\mathfrak{R}^{5}, \mathfrak{R}\right)$.

Problem 2:

For

$$
A=\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 5 & 1 \\
-1 & 0 & 2 \\
3 & 7 & 1
\end{array}\right]
$$

determine the rank and nullity of the above linear operator, A ? And find a basis for the range space and the null space of the linear operator, A, respectively?

Problem 3:

Show if the following sets

$$
\left[\begin{array}{c}
3 \\
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
0 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
-2 \\
2
\end{array}\right]
$$

span the same subspace V of $\left(\Re^{4}, \mathfrak{R}\right)$.

Problem 4:

An orthogonal complement space, V^{\perp}, is spanned by v_{1}, v_{2}, v_{3} given as

$$
v_{1}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right] .
$$

Determine the original space, V, and find an orthogonal basis. For $x=\left[\begin{array}{llll}0 & 3 & 3 & 0\end{array}\right]^{T}$, find its direct sum representation of $x=x_{1} \oplus x_{2}$, such that $x_{1} \in V$, and $x_{2} \in V^{\perp}$.

